The mechanism of biological effects of environmental electromagnetic radiation is still not completely clear. The chelation of biological small molecule peptides with metal ions plays a very important role in human metabolism. In this paper, a special experimental system was designed to measure the conductivity of carnosine and zinc chloride mixed aqueous solutions under different concentration ratios, microwave powers, and temperatures. The experimental results show that, first, different concentration ratios can alter the conductivity change rate of the mixed aqueous solution. The conductivity of the solution always increases under microwave irradiation at a concentration ratio of 1:1. However, the conductivity is reduced by -0.04% with a 1:5 concentration ratio and 6 W microwave power at 10 °C. Second, temperature can alter the conductivity change rate of the aqueous mixture. The higher the temperature, the smaller the conductivity change rate. Third, different microwave powers can alter the conductivity change rate of the mixed aqueous solution. In general, the conductivity change rate increases with an increase in microwave power. Experimentally observed reduction of the conductivity change rate in carnosine and zinc chloride aqueous solution under low microwave power and low temperature indicates that microwaves do affect the chelation of carnosine with zinc chloride. This work provides a new perspective for the mechanism of explanation of microwave biological effects.