RNA-protein interactions (RPIs) are crucial for accurately operating various processes in and between organisms across kingdoms of life. Mutual detection of RPI partner molecules depends on distinct sequential, structural, or thermodynamic features, which can be determined via experimental and bioinformatic methods. Still, the underlying molecular mechanisms of many RPIs are poorly understood. It is further hypothesized that many RPIs are not even described yet. Computational RPI prediction is continuously challenged by the lack of data and detailed research of very specific examples. With the discovery of novel RPI complexes in all kingdoms of life, adaptations of existing RPI prediction methods are necessary. Continuously improving computational RPI prediction is key in advancing the understanding of RPIs in detail and supplementing experimental RPI determination. The growing amount of data covering more species and detailed mechanisms support the accuracy of prediction tools, which in turn support specific experimental research on RPIs. Here, we give an overview of RPI prediction tools that do not use high-throughput data as the user's input. We review the tools according to their input, usability, and output. We then apply the tools to known RPI examples across different kingdoms of life. Our comparison shows that the investigated prediction tools do not favor a certain species and equip the user with results varying in degree of information, from an overall RPI score to detailed interacting residues. Furthermore, we provide a guide tree to assist users which RPI prediction tool is appropriate for their available input data and desired output.
Read full abstract