More than 30 years have passed after the collapse of the Soviet Union, and huge areas of soil were left in a fallow state. The study of the microbiological status of fallow soils is an extremely urgent task because fallow soils represent the “hidden” food basket of Eurasia. In this context, we studied the influence of land use type (pasture, vegetable garden, hayfield, or secondary afforestation) on key agrochemical parameters and parameters of soil microbial biodiversity. All anthropogenically transformed soils included in the analysis showed increased humus content and pH shift to a more neutral side compared to the mature soil; the same seemed to be the case for all nutrient elements. It was established that the key factor regulating soil microbiome composition shift was the duration and degree of irreversibility of an agrogenic impact. The key phyla of soil microorganisms were Pseudomonadota, Acidobacteriota, Verrucomicrobiota, Bacteroidota, and Actinobacteriota. The proportion of other phyla was quite variative in soils of different land use. At the same time, all the 30-year-old abandoned soils were more similar to each other than to mature reference soil and 130-year-old soils of monoculture vegetable gardens. Thus, the first factor, regulating soil microbiome composition, is a continuation of soil agrogenic transformation. The second factor is the type of land use if the soil age was equal for fallow territory in the case of one initial podzol soil and one type of landscape. Thus, 30-year-old abandoned soils are intermediate in terms of microbial biodiversity between pristine natural podzols and plaggic podzol. It could be suggested that in the case of secondary involvement of soils in agriculture, the composition of the microbiome may turn to mature soil or to plaggic soil under intensive amelioration.