Innovating novel, green, biodegradable, and recyclable polymers are critical for the development of environmentally sustainable solutions, eliminating concerns of pollution and microplastic accumulation. Herin, this study presents remarkably enhanced tribo-positive polyethylene oxide (PEO) polarity, by incorporating for the first time, a clay inorganic filler, creating a novel biodegradable composite triboelectric material. The low-cost composite comprised a biodegradable polymeric PEO matrix, an abundant naturally sourced muscovite mica micro-platelet filler, and integrated simple material fabrication methods. A 4 cm2 PEO/Mica film was paired with polytetrafluoroethylene (PTFE), generating a peak-to-peak voltage, current density, and transferred charge density of respectfully, 296 V, 24.2 mA m−2, and 110.3 µC m−2. Reducing the film thickness to 40 µm dramatically enhanced the electrical output, resulting in a peak-to-peak voltage and instantaneous power density of respectfully, 424 V and 12.1 W m−2. The addition of mica greatly improved the dielectric permittivity, promoting the outstanding triboelectric performance. The composite material's long-term stability and flexibility demonstrated significant advantages for self-powering small electronic systems. Furthermore, PEOs facile water solubility allowed mica separation, recovery, recyclability, and integration within new PEO/Mica films, resulted in preserved triboelectric outputs. The PEO/Mica composite delivers exceptional sustainable, recyclable, and tribo-positive attributes, serving as an excellent energy harvesting solution.
Read full abstract