AbstractGiven a sequence of polynomials$\{x_k(q)\}_{k \ges 0}$, define the transformation$$y_n(q) = a^n\sum\limits_{i = 0}^n {\left( \matrix{n \cr i} \right)} b^{n-i}x_i(q)$$for$n\ges 0$. In this paper, we obtain the relation between the Jacobi continued fraction of the ordinary generating function ofyn(q) and that ofxn(q). We also prove that the transformation preservesq-TPr+1(q-TP) property of the Hankel matrix$[x_{i+j}(q)]_{i,j \ges 0}$, in particular forr= 2,3, implying ther-q-log-convexity of the sequence$\{y_n(q)\}_{n\ges 0}$. As applications, we can give the continued fraction expressions of Eulerian polynomials of typesAandB, derangement polynomials typesAandB, general Eulerian polynomials, Dowling polynomials and Tanny-geometric polynomials. In addition, we also prove the strongq-log-convexity of derangement polynomials typeB, Dowling polynomials and Tanny-geometric polynomials and 3-q-log-convexity of general Eulerian polynomials, Dowling polynomials and Tanny-geometric polynomials. We also present a new proof of the result of Pólya and Szegö about the binomial convolution preserving the Stieltjes moment property and a new proof of the result of Zhu and Sun on the binomial transformation preserving strongq-log-convexity.
Read full abstract