GPR84 is a promising therapeutic target and biomarker for a range of diseases. In this study, we reported the discovery of BINOL phosphate (BINOP) derivatives as GPR84 antagonists. By investigating the structure-activity relationship, we identified 15S as a novel GPR84 antagonist. 15S exhibits low nanomolar potency and high selectivity for GPR84, while its enantiomer 15R is less active. Next, we rationally designed and synthesized a series of GPR84 fluorogenic probes by conjugating Nile red and compound 15S. The leading hybrid, probe F8, not only retained GPR84 activity but also exhibited low nonspecific binding and a turn-on fluorescent signal in an apolar environment. F8 enabled visualization and detection of GPR84 in GPR84-overexpressing HEK293 cells and lipopolysaccharide-stimulated neutrophils. Furthermore, we demonstrated that F8 can detect upregulated GPR84 protein levels in mice models of inflammatory bowel disease and acute lung injury. Thus, compound F8 represents a promising tool for studying GPR84 functions.
Read full abstract