Mining activities, particularly in large excavations like the Bingham Canyon Copper Mine in Utah, have been increasingly linked to respiratory conditions due to heavy-metal-enriched waste and dust. Operating continuously since 1906, the Bingham Canyon Copper Mine contributes 4.4% of the Salt Lake Valley PM2.5 pollution. However, the extent of its contributions to larger-sized particulate matter (PM10) dust, soil and water contamination, and human health impacts is largely unknown. Aerosol optical depth data from Sentinel-2 imagery revealed discernible dust clouds downwind of the mine and smelter on non-prevailing-wind days, suggesting potential heavy metal dispersion from this fugitive dust and subsequent deposition to nearby surface soils. Our analysis of topsoils from across the western Salt Lake Valley found mean arsenic, copper, lead, and zinc concentrations to be well above global background concentrations. Also, the minimum values for arsenic and maximum values for lead were well above the US EPA regional screening levels for residential soils. Thus, arsenic is the metal of greatest concern for impacts on human health. Elevated concentrations of all metals were most notable near the mine, smelter, and tailings pond. Our study linked these elevated heavy metal levels to regional asthma outcomes through cluster analysis and distance-related comparison tests. Significant clusters of high asthma rates were observed in regions with elevated topsoil heavy metal concentrations, impacting both low- and high-income neighborhoods. The findings of this preliminary study suggest that the mine, smelter, and recent construction activities, especially on lands reclaimed from former tailings ponds, could be contributing to atmospheric dust containing high levels of heavy metals and exacerbating asthma outcomes for residents. However, the methods used in the study with aggregated health outcome data cannot determine causal links between the heavy metal contents of soil and health outcomes; they can only point to potential links and a need for further investigation. Such further investigation should involve individual-level data and control for potential confounding factors, such as socioeconomic status, access to healthcare, and lifestyle factors, to isolate the effect of metal exposures on asthma outcomes. This study focused on atmospheric deposition as a source of heavy metal enrichment of topsoil. However, future research is also essential to assess levels of heavy metals in subsoil parent materials and local surface and groundwaters to be able to assess the links between the sources or methods of soil contamination and health outcomes.