NADPH-cytochrome P450 reductase (CPR) is crucial for the detoxification process catalysed by cytochrome P450, which targets various exogenous xenobiotics, as well as pesticides. In our research, we successfully obtained the complete cDNA sequence of Apolygus lucorum's CPR (AlCPR) using reverse transcription PCR along with rapid amplification of cDNA ends technology. Bioinformatics analysis exhibited that the inferred amino acid sequence of AlCPR is characteristic of standard CPRs, featuring an N-terminal membrane anchor and three conserved FMN, FAD and NADP binding sites. Phylogenetic result revealed that AlCPR was positioned within the Hemiptera cluster, showing a close evolutionary relationship with the CPR of Cimex lectularius. The real-time quantitative PCR results demonstrated widespread expression of AlCPR across various life stages and tissues of A. lucorum, with the most prominent expression in adults and the abdominal region. Injecting double-stranded RNA of AlCPR only significantly increased the lambda-cyhalothrin susceptibility in lambda-cyhalothrin-resistant strain rather than the susceptible strain. These findings suggest a potential link between AlCPR and the P450-dependent defence mechanism against lambda-cyhalothrin in A. lucorum.
Read full abstract