The herpes simplex virus type 1 L/S junction-spanning transcripts (L/STs) are a family of multisized transcripts expressed at high levels in cells infected with mutant viruses that (i) do not express ICP4, (ii) specify forms of ICP4 unable to bind to the consensus ICP4 binding site, or (iii) contain mutations in the ICP4 binding site located at the transcriptional start site of the L/STs. By extension, the failure to detect the L/STs in wild-type virus-infected cells is due to the repressive effect of ICP4 bound to its cognate binding site upstream of the L/ST transcription initiation site. ORF-P, the first and largest open reading frame (ORF) encoded by the L/STs, overlaps >90% of the ORF encoding ORF-34.5, a putative neurovirulence factor, which is transcribed from the opposite DNA strand. Viruses with mutations in the overlapping region of ORF-P and ICP34.5 exhibit premature shutoff of infected-cell protein synthesis and are highly attenuated following intracranial inoculation of juvenile mice. To determine whether the premature protein shutoff and neuroattenuated phenotypes of ORF-P ORF-34.5 double mutants are a consequence of alterations in ORF-P, ORF-34.5, or both, viruses containing mutations only in ORF-P or only in the ICP4 binding site in the L/ST promoter were isolated and characterized. Mutant virus L/ST-n38 contains a single-base-pair transition mutation in ORF-P codon 38, resulting in translational termination of the ORF-P protein (OPP). This mutation does not alter the amino acid sequence of ICP34.5. Expression of a truncated form of OPP by mutant virus L/ST-n38 did not result in premature shutoff of infected-cell protein synthesis and produced no other observable phenotype relative to wild-type virus in in vitro tests. Moreover, the 50% lethal dose (LD50) of L/ST-n38 was comparable to that of wild-type virus following intracranial inoculation of 3-week-old mice, as were the latency and reactivation phenotypes of the virus. These properties of L/ST-n38 indicate that the attenuated phenotype of ORF-P ORF-34.5 double mutants is a consequence of mutations that affect the function of ICP34.5 and not the function of OPP. Mutant virus LST-4BS contains four single-base-pair substitutions in the ICP4 binding site in the L/ST promoter that abrogate the binding of ICP4 to this site, leading to high-level expression of the L/STs and OPP. LST-4BS induced premature shutoff of viral and cellular protein synthesis and was slightly growth restricted in cells of neural lineage (SK-N-SH human neuroblastoma cells) but was wild type for these two parameters in cells of nonneural lineage (immortalized primate Vero cells). Of particular interest was the observation that L/ST-4BS exhibited cell-type-specific expression of both the gamma(1)34.5 transcripts and the latency-associated transcripts (LATs). Thus, expression of these transcripts was barely detectable in cells of neural lineage (NB41A3 mouse neuroblastoma cells) but was wild type in Vero cells. In vivo, L/ST-4BS was reactivated from mouse trigeminal ganglia with reduced efficiency and delayed kinetics relative to wild-type virus. L/ST-4BS was completely attenuated for neurovirulence (LD50 > 10(6) PFU) relative to wild-type virus (LD50 < 900 PFU), although the four single-base-pair substitutions lie outside the coding region for the neurovirulence factor, ICP34.5. Collectively, the complex in vitro and in vivo phenotypes of L/ST-4BS can be attributed to (i) disruptions of the ICP4 binding site in the L/ST promoter and subsequent overexpression of the L/STs and OPP; (ii) alterations in ORF-O, which is also mutated in L/ST-4BS; or (iii) alterations in other cryptic genes or cis-acting elements.
Read full abstract