The maximum length binary sequence (MLBS) is widely used as a broadband pseudo-random noise excitation signal, for example, for system identification. Although its properties have been known for decades, misleading or inaccurate statements can be found in many references. For example, it is sometimes stated that the spectrum of the MLBS is white, whereas in other references a sinc behavior is stated. In this paper, we therefore analyze the MLBS properties based on precise definitions for the given context (time-discrete vs. time-continuous, periodic vs. non-periodic, etc.), especially with respect to Fourier analysis. Another difficulty arises from the fact that in the literature the mathematical definitions are often simplified by means of normalizations which makes the physical interpretation difficult. Therefore, special emphasis is put on scaling factors which allow such a physical interpretation.