The catalytic oxidation of different volatile organic compounds (VOCs) has been widely studied for several decades within the field of air depollution. However, there is still much to understand regarding the effects that these VOCs have on each other when they are blended together in the reaction mixture, as would be expected in many emissions. Herein, the catalytic oxidation of toluene and 2-propanol on supported manganese oxides under both single and binary VOCs oxidation conditions has been studied. We have found the catalyst activity for VOCs mineralization and its selectivity towards other by-products (i.e., acetone or propylene from 2-propanol) to be strongly dependent on the reaction conditions, the catalyst redox properties and support acidity. We have also assessed the promotion/inhibition effects derived from the VOCs mixture and proposed the reaction mechanism in each case by means of in-situ DRIFTS measurements.