Beidou Navigation Satellite System (BDS) third generation satellites currently broadcast Open Service (OS) signals into two closely spaced Radio Frequencies (RFs) in the B2 band. These are the B2a and B2b signal components, which form the current implementation of the Asymmetric Constant-Envelope Binary Offset Carrier (ACE-BOC) modulation. The B2a signal features both a data and a pilot channel, whereas the B2b component is data only with data symbols of 1 ms duration. The absence of a pilot channel and the fast data rate make the processing of the B2b component challenging. Tracking performance can, however, be improved by jointly processing the B2a and B2b components. In this respect, meta-signal approaches are investigated for jointly processing the B2a and B2b signals. Two meta-signal tracking architectures are proposed: the first considers the pilot channel of the B2a component and the data channel of the B2b signal. The second exploits all the power available and also implements data/pilot combining on the B2a channel. Both architectures allow the extension of the integration time beyond the data symbol duration using non-coherent approaches. Theoretical results are supported by simulations and real data analysis performed using a custom Software Defined Radio (SDR) receiver. Simulation and experimental results clearly show the benefits of the meta-signal approach, which can be effectively adopted for the processing of asymmetric modulations such as the current implementation of the ACE-BOC, which lacks a pilot channel on the B2b component.