Acidolysis lignins from the species Quercus cerris L. and Eucalyptus camaldulensis Dehnh. were isolated and characterized using high pressure size exclusion chromatography (HP-SEC), Fourier-transform (FTIR) infrared spectroscopy, analytical pyrolysis-gas chromatography-mass spectrometry (Py-GCMS), and two-dimensional heteronuclear single quantum coherence (2D HSQC) NMR spectroscopy. The acidolysis lignins from the two different species varied in chemical composition and structural characteristics, with Q. cerris L. lignin having a higher S/G ratio and higher molar mass averages with a bimodal molar mass distribution. The different analytical techniques FTIR spectroscopy, Py-GCMS, and 2D NMR spectroscopy provided consistent results regarding the S/G ratio of the lignins from the two wood species. Based on the determined high S/G ratio of both oak and eucalypt lignin, the two wood sources could be promoted as substrates for efficient lignin isolation in modern forest biorefineries in order to develop innovative lignin-based value-added biorefinery products.
Read full abstract