Abstract Fix a nonzero window g ∈ 𝒮 ( ℝ n ) ${g\in\mathcal{S}(\mathbb{R}^{n})}$ , a weight function w on ℝ 2 n ${\mathbb{R}^{2n}}$ and 1 ≤ p , q ≤ ∞ ${1\leq p,q\leq\infty}$ . The weighted Lorentz type modulation space M ( p , q , w ) ( ℝ n ) ${M(p,q,w)(\mathbb{R}^{n})}$ consists of all tempered distributions f ∈ 𝒮 ′ ( ℝ n ) ${f\in\mathcal{S}^{\prime}(\mathbb{R}^{n})}$ such that the short time Fourier transform V g f ${V_{g}f}$ is in the weighted Lorentz space L ( p , q , w d μ ) ( ℝ 2 n ) ${L(p,q,w\,d\mu)(\mathbb{R}^{2n})}$ . The norm on M ( p , q , w ) ( ℝ n ) ${M(p,q,w)(\mathbb{R}^{n})}$ is ∥ f ∥ M ( p , q , w ) = ∥ V g f ∥ p q , w ${\|f\/\|_{M(p,q,w)}=\|V_{g}f\/\|_{pq,w}}$ . This space was firstly defined and some of its properties were investigated for the unweighted case by Gürkanlı in [9] and generalized to the weighted case by Sandıkçı and Gürkanlı in [16]. Let 1 < p 1 , p 2 < ∞ ${1<p_{1},p_{2}<\infty}$ , 1 ≤ q 1 , q 2 < ∞ ${1\leq q_{1},q_{2}<\infty}$ , 1 ≤ p 3 , q 3 ≤ ∞ ${1\leq p_{3},q_{3}\leq\infty}$ , ω 1 , ω 2 ${\omega_{1},\omega_{2}}$ be polynomial weights and ω 3 ${\omega_{3}}$ be a weight function on ℝ 2 n ${\mathbb{R}^{2n}}$ . In the present paper, we define the bilinear multiplier operator from M ( p 1 , q 1 , ω 1 ) ( ℝ n ) × M ( p 2 , q 2 , ω 2 ) ( ℝ n ) ${M(p_{1},q_{1},\omega_{1})(\mathbb{R}^{n})\times M(p_{2},q_{2},\omega_{2})(% \mathbb{R}^{n})}$ to M ( p 3 , q 3 , ω 3 ) ( ℝ n ) ${M(p_{3},q_{3},\omega_{3})(\mathbb{R}^{n})}$ in the following way. Assume that m ( ξ , η ) ${m(\xi,\eta)}$ is a bounded function on ℝ 2 n ${\mathbb{R}^{2n}}$ , and define B m ( f , g ) ( x ) = ∫ ℝ n ∫ ℝ n f ^ ( ξ ) g ^ ( η ) m ( ξ , η ) e 2 π i 〈 ξ + η , x 〉 𝑑 ξ 𝑑 η for all f , g ∈ 𝒮 ( ℝ n ) . $B_{m}(f,g)(x)=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\hat{f}(\xi)\hat{g}(% \eta)m(\xi,\eta)e^{2\pi i\langle\xi+\eta,x\rangle}\,d\xi\,d\eta\quad\text{for % all ${f,g\in\mathcal{S}(\mathbb{R}^{n})}$. }$ The function m is said to be a bilinear multiplier on ℝ n ${\mathbb{R}^{n}}$ of type ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ${(p_{1},q_{1},\omega_{1};p_{2},q_{2},\omega_{2};p_{3},q_{3},\omega_{3})}$ if B m ${B_{m}}$ is the bounded bilinear operator from M ( p 1 , q 1 , ω 1 ) ( ℝ n ) × M ( p 2 , q 2 , ω 2 ) ( ℝ n ) ${M(p_{1},q_{1},\omega_{1})(\mathbb{R}^{n})\times M(p_{2},q_{2},\omega_{2})(% \mathbb{R}^{n})}$ to M ( p 3 , q 3 , ω 3 ) ( ℝ n ) ${M(p_{3},q_{3},\omega_{3})(\mathbb{R}^{n})}$ . We denote by BM ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ) ( ℝ n ) ${\mathrm{BM}(p_{1},q_{1},\omega_{1};p_{2},q_{2},\omega_{2})(\mathbb{R}^{n})}$ the space of all bilinear multipliers of type ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) ${(p_{1},q_{1},\omega_{1};p_{2},q_{2},\omega_{2};p_{3},q_{3},\omega_{3})}$ , and define ∥ m ∥ ( p 1 , q 1 , ω 1 ; p 2 , q 2 , ω 2 ; p 3 , q 3 , ω 3 ) = ∥ B m ∥ ${\|m\|_{(p_{1},q_{1},\omega_{1};p_{2},q_{2},\omega_{2};p_{3},q_{3},\omega_{3})% }=\|B_{m}\|}$ . We discuss the necessary and sufficient conditions for B m ${B_{m}}$ to be bounded. We investigate the properties of this space and we give some examples.
Read full abstract