Advanced technology innovations allow cost-effective, high-throughput profiling of biological systems. It enabled genome sequencing in days using advanced technologies (e.g., next-generation sequencing, microarrays, and mass spectrometry). Since technology has been developed, massive biological data (e.g., genomics, proteomics) has been produced cheaply, allowing the "big data" era to create new opportunities to solve medical and biological complications in many disciplines-preventive medicine, biology, Personalized Medicine, gene sequencing, healthcare, and industry. Computational biology and bioinformatics are interdisciplinary fields that develop and apply computational methods (e.g., analytical methods, mathematical modeling, and simulation) to analyze large collections of biological data, such as genetic sequences, cell populations, or protein samples, to make new predictions or discover new biology. Biological data storage, mining, and analysis have challenges because data is much more heterogeneous. In this study, the big data resources of genomics, proteomics, and metabolomics have been explored to solve biological problems using big data analysis approaches. The goal is to build a network of relationship-based gene-disease associations to prioritize phenotypes common to epilepsy and seizure disease. Through network analysis, The 10 seed genes, 22 associated genes, 132 microRNAs, and 38 transcription factors have been identified that have a direct effect on all forms of epilepsy and seizures. The majority of seed genes, according to the results of a functional analysis of seed genes, are involved in the acetylcholine-gated channel complex (10%) and the heterotrimeric G-protein complex (10%) pathways related to cellular components, followed by a role in the regulation of action potential (20%) and positive regulation of vascular endothelial growth factor production (20%) in Epilepsy and Seizures pathways related to biological processes. This study might provide insight into the workings of the disease and shows the importance of continued research into epilepsy and other conditions that can trigger seizure activity.
Read full abstract