Moderate-Resolution Imaging Spectroradiometer (MODIS) Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) products are being increasingly used for the quantitative remote sensing of vegetation. However, the assumption underlying the MODIS NBAR product’s inversion model—that surface anisotropy remains unchanged over the 16-day retrieval period—may be unreliable, especially since the canopy structure of vegetation undergoes stark changes at the start of season (SOS) and the end of season (EOS). Therefore, to investigate the MODIS NBAR product’s temporal effect on the quantitative remote sensing of crops at different stages of the growing seasons, this study selected typical phenological parameters, namely SOS, EOS, and the intervening stable growth of season (SGOS). The PROBA-V bioGEOphysical product Version 3 (GEOV3) Fractional Vegetation Cover (FVC) served as verification data, and the Pearson correlation coefficient (PCC) was used to compare and analyze the retrieval accuracy of FVC derived from the MODIS NBAR product and MODIS Surface Reflectance product. The Anisotropic Flat Index (AFX) was further employed to explore the influence of vegetation type and mixed pixel distribution characteristics on the BRDF shape under different stages of the growing seasons and different FVC; that was then combined with an NDVI spatial distribution map to assess the feasibility of using the reflectance of other characteristic directions besides NBAR for FVC correction. The results revealed the following: (1) Generally, at the SOSs and EOSs, the differences in PCCs before vs. after the NBAR correction mainly ranged from 0 to 0.1. This implies that the accuracy of FVC derived from MODIS NBAR is lower than that derived from MODIS Surface Reflectance. Conversely, during the SGOSs, the differences in PCCs before vs. after the NBAR correction ranged between –0.2 and 0, suggesting the accuracy of FVC derived from MODIS NBAR surpasses that derived from MODIS Surface Reflectance. (2) As vegetation phenology shifts, the ensuing differences in NDVI patterning and AFX can offer auxiliary information for enhanced vegetation classification and interpretation of mixed pixel distribution characteristics, which, when combined with NDVI at characteristic directional reflectance, could enable the accurate retrieval of FVC. Our results provide data support for the BRDF correction timescale effect of various stages of the growing seasons, highlighting the potential importance of considering how they differentially influence the temporal effect of NBAR corrections prior to monitoring vegetation when using the MODIS NBAR product.