The surface material of an object is a key factor that affects non-line-of-sight (NLOS) imaging. In this paper, we introduce the bidirectional reflectance distribution function (BRDF) into NLOS imaging to study how the target surface material influences the quality of NLOS images. First, the BRDF of two surface materials (aluminized insulation material and white paint board) was modeled using deep neural networks and compared with a five-parameter empirical model to validate the method’s accuracy. The method was then applied to fit BRDF data for different common materials. Finally, NLOS target simulations with varying surface materials were reconstructed using the confocal diffusion tomography algorithm. The reconstructed NLOS images were classified via a convolutional neural network to assess how different surface materials impacted imaging quality. The results show that image clarity improves when decreasing the specular reflection and increasing the diffuse reflection, with the best results obtained for surfaces exhibiting a high diffuse reflection and no specular reflection.