This paper presents a direct 3D numerical simulation of biaxial surface wrinkling of thin metal film on a compliant substrate. The selected compliant substrate is a commercial Scotch tape on which a gold metal thin film has been transferred by using low adhesion between the thin metal film and polyimide substrate. Compared with the previous fabrication of a cylindrical thin-film wrinkling pattern, an undulated wrinkling pattern has been implemented by increasing the width of the thin metal film in order to create biaxial straining in the thin film. To understand the wrinkling behavior due to biaxial loading, a simple direct numerical simulation based on material imperfections defined in the compliant substrate has been conducted. Through modeling and simulation, it was found that the wrinkling mode is determined by the biaxiality ratio (BR), the ratio between transversal strain and longitudinal strain. Depending on the BR, the wrinkling mode belongs to one of the cylindrical, undulated (or herringbone), checkerboard, or labyrinth modes as a function of applied strain. The cylindrical wrinkling is dominant at the input of BR less than 0.5, while the undulated (or herringbone) ones become dominant just after the onset of the wrinkling pattern at BR greater than 0.9. Through the comparison of the wrinkling patterns between simulation and experiment, the applied BR of the fabricated thin film has been successfully estimated.
Read full abstract