Part I of this paper [Haward et al., J. Rheol. 67, 995–1009 (2023)] presents a three-dimensional microfluidic device (the optimized uniaxial and biaxial extensional rheometer, OUBER) for generating near-homogeneous uniaxial and biaxial elongational flows. Here, in Part II, the OUBER device is employed to examine the uniaxial and biaxial extensional rheology of model dilute polymer solutions, compared with measurements made under planar extension in the optimized-shape cross-slot extensional rheometer [OSCER, Haward et al. Phys. Rev. Lett. 109, 128301 (2012)]. In each case, micro-particle image velocimetry is used to measure the extension rate as a function of the imposed flow conditions, and excess pressure drop measurements enable estimation of the tensile stress difference generated in the fluid via a new analysis based on the macroscopic power balance for flow through each device. Based on this analysis, for the most dilute polymer sample tested, which is “ultradilute”, the extensional viscosity is well described by Peterlin’s finitely extensible nonlinear elastic dumbbell model. In this limit, the biaxial extensional viscosity at high Weissenberg numbers (Wi) is half that of the uniaxial and planar extensional viscosities. At higher polymer concentrations, although the fluids remain dilute, the experimental measurements deviate from the model predictions, which is attributed to the onset of intermolecular interactions as the polymer chains unravel in the extensional flows. Of practical significance (and fundamental interest), elastic instability occurs at a significantly lower Wi in uniaxial extensional flow than in either biaxial or planar extensional flow, thereby limiting the utility of this flow type for extensional viscosity measurement.