We present quantum kinetic calculations showing how squeezed phonon states can be generated in a biased quantum well by optical driving. In such states the uncertainty of the lattice displacement or momentum is reduced below its zero-point value. It is shown that quantitative results that are meaningful for real observations require accounting for the inevitably limited spatial resolution. Our simulations yield results for the strength of the squeezing and predict under which conditions it can occur: Optical excitations on the lowest absorption line need at least two pulses to generate squeezing, while a single pulse below the band gap may produce a squeezed state which has an almost minimum-value uncertainty product.
Read full abstract