Researchers have become increasingly interested in solar energy based on semiconductor photocatalysts to remove hazardous pollutants and clean the environment. In this work, an efficient MoS2-Bi2Te3-V2O5 nanocomposite has been prepared through wet impregnation method. MoS2-Bi2Te3-V2O5 photocatalyst was utilized to decompose the MB and Rh B dyes. The photocatalytic efficiency (Rh B) of MoS2-Bi2Te3-V2O5 nanocomposite (95.19 %) was higher than 2.70 times of Bi2Te3 nanorods, 1.55 times of V2O5 nanoparticles, 1.68 times of MoS2 nanosheets, 1.50 times of MoS2-Bi2Te3, and 1.21 times of MoS2-V2O5 nanocomposite, respectively. Recycling tests conducted on the MoS2-Bi2Te3-V2O5 nanocomposite revealed its high stability and durability. The outcomes obtained from the scavenger test suggest that the photogenerated hydroxyl radicals play a chief role in the photocatalytic performance of Rh B dye in the MoS2-Bi2Te3-V2O5 nanocomposite, respectively. The enhanced photocatalytic performance of the MoS2-Bi2Te3-V2O5 nanocomposite is ascribed to the strong hybrid formation of Bi2Te3, V2O5, and MoS2 nanosheets, respectively. Consequently, the straightforward and readily synthesized MoS2-Bi2Te3-V2O5 nanocomposite can serve as an economical, highly effective material for environmental applications.
Read full abstract