GaAsBi nanowires (NWs) are promising for optoelectronic applications in the near- and mid-infrared wavelengths due to the optical properties of the Bi-containing compound and the nanowire structure benefits. In general, synthesizing the GaAsBi NWs results in uncontrollable metamorphic structures and spontaneous Bi-containing droplets. Here, we explore the potential of using the droplets as catalysts to form GaAsBi nanowires (hence, the vapor-liquid-solid growth mechanism) on GaAs (111) substrates by molecular beam epitaxy. The GaAsBi NWs experience a two-step growth: Bi droplet deposition and GaAsBi nanowire growth. The optimal droplet deposition temperature (250 °C) is defined based on the droplet morphologies. The gradation of growth temperatures of GaAsBi NWs to 250 °C, 300 °C, and 350 °C results in high-aspect-ratio NWs, tilted NWs, and low-aspect-ratio NWs, respectively. Structural investigation shows that the optimal (low-aspect-ratio) NW has the composition of GaAs0.99Bi0.01 with the catalytic droplet of Ga0.99Bi0.01 decorated on its tip. Detailed structural analyses show that the Bi content progressively increases from the NW stem to the wire-substrate interface. The satisfying GaAsBi NW morphology does not warrant the expected superior optical results. Photoluminescence study suggests that the NW has a strong carrier thermalization from the NW stem to the wire-substrate interface influenced by the graded NW growth temperature profile.
Read full abstract