Human interpersonal capacities emerge from coordinated neural, biological, and behavioral activity unfolding within and between people. However, developmental research to date has allocated comparatively little focus to the dynamic processes of how social interactions emerge across these levels of analysis. Second-person neuroscience and dynamic systems approach together to offer an integrative framework for addressing these questions. This study quantified respiratory sinus arrhythmia and social behavior (∼360 observations per system) from 44 mothers and typically developing 9-month-old infants during a novel modified "still-face" (text message perturbation) task. Stochastic autoregression models indicate that the infant parasympathetic nervous system is coupled within and between people second by second and is sensitive to social context. Intraindividual, we found positive coupling between infants' parasympathetic nervous system activity and their social behavior in the subsequent second, but only during the moments and periods of active caregiver engagement. Between people, we found a bidirectional coregulatory feedback loop: Mothers' parasympathetic activity positively predicted that of their infant in the subsequent second, a form of synchrony that decreased during the text message perturbation and did not fully recover. Conversely, infant parasympathetic activity negatively predicted that of their mother at the subsequent second, a form of synchrony that was invariant over social context. Findings reveal unidirectional parasympathetic coupling within infants and a complementary allostatic feedback loop between mother and infant parasympathetic systems. They offer novel evidence of a dynamic, socially embedded parasympathetic system at previously undocumented timescales, contributing to both basic science and potential clinical targets to better support adaptive, multisystem social development. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Read full abstract