We report on the realization of a unidirectional transmission-based bidirectional erbium-doped fiber amplifier (UTB-EDFA) for the coherent optical fiber links. By applying an optical phase-locked loop (OPLL) between the two unidirectional EDFA (Ui-EDFA) paths, the annoying uncorrelated phase noise between the two paths can be largely suppressed. Promisingly, we can independently optimize the gains of the UTB-EDFAs for bidirectional transmissions, resulting in higher net gain acquired compared with the conventional single-path bidirectional EDFA (SPBA)-based ones. We demonstrate that the fractional frequency instability of the UTB-EDFA-based scheme can be decreased by 26.3% over the most asymmetrical 100 km two-way optical frequency comparison (TWC) system compared with the SPBA-based ones and, more importantly, can acquire higher net gain for unevenly distributed sub-links over ultra-long fiber links, such as 1000 km, by independently optimizing the gains. This technique paves the way for the applications of large-scale fiber networks.
Read full abstract