The mechanisms underlying the initiation and progression of bifurcation versus lateral wall aneurysms are not well understood. Computational fluid dynamics (CFD) can improve the understanding of these mechanisms and can consequently help identify patients at higher risk for developing aneurysms and monitor them more closely. A 36-year-old man presented with a ruptured anterior communicating artery aneurysm, which was successfully treated with microsurgical clipping. Imaging also revealed a persistent stapedial artery with an elongated and tortuous posterior communicating artery (PComA). Fourteen years later, he was readmitted for a ruptured aneurysm on a PComA loop. CFD helped identify considerable collateral circulation due to the aberrant internal carotid artery (ICA). High flow rates trigger both types of aneurysms, but nuances exist in the hemodynamic mechanisms that drive their growth. Berry aneurysms and lateral wall aneurysms initially start due to a high flow rate, a common underlying cause. However, the formation of true sidewall aneurysms is primarily characterized by locally increased wall shear stress, while the development of berry aneurysms is mainly linked to high local blood pressure at arterial bifurcations. An aberrant ICA can lead to supraphysiological compensatory flow in the anterior and posterior circulation, increasing the risk of intracranial aneurysm formation at both branching and nonbranching sites, underscoring the need for lifelong monitoring. https://thejns.org/doi/10.3171/CASE24421.
Read full abstract