We study the zero-temperature stochastic Ising model on some connected planar quasi-transitive graphs, which are invariant under rotations and translations. The initial spin configuration is distributed according to a Bernoulli product measure with parameter p∈(0,1)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ p\\in (0,1) $$\\end{document}. In particular, we prove that if p=1/2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ p=1/2 $$\\end{document} and the graph underlying the model satisfies the planar shrink property then all vertices flip infinitely often almost surely.
Read full abstract