Because ascorbic acid (AA) is one of the basic elements to maintain the normal physiological functions of human body, it is urgent to develop a material that can achieve efficient, rapid and in-situ detection for AA. A new fluorescence organic compound 4′,4′′′-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis([1,1′-biphenyl]-4-carboxylic acid) (H2BTBC) based on benzothiadiazole group has been synthesized, which can detect Fe3+ ions by fluorescence turn-off effect with a detection limit of 0.015 μM, as well as recognize linear amines by fluorescence turn-on effect. Moreover, a highly stable Tb(III) metal–organic framework has been solvothermally prepared with H2BTBC, namely {[(CH3)2NH2]2[Tb2(BTBC)4]∙solvents}n (JXUST-39), which can selectively detect AA among biological fluids by fluorescence enhancement effect with a detection limit of 0.077 μM. In addition, the mechanism for JXUST-39 detecting AA is possibly the cooperative effect of absorbance-caused enhancement and charge transfer between JXUST-39 and AA. Moreover, LED lamp beads, fluorescent films and fluorescent detection test paper based on JXUST-39 were prepared to achieve portable detection via fluorescence enhancement effect.
Read full abstract