Dicamba is a benzoic acid herbicide used to target woody and broadleaf weeds in industrial, domestic, and municipal spheres. Because of its widespread use, dicamba is frequently detected in surface waters near sites of application. However, little is known regarding the effects of dicamba on freshwater fishes. In the present study, primary cultures of hepatocytes from rainbow trout (Oncorhynchus mykiss) were exposed to either an environmentally relevant (0.22 or 2.2 μg L−1) or supra-environmental (22 μg L−1) concentration of dicamba for 48 h to investigate if oxidative stress is a mechanism of toxicity. mRNA abundances of genes involved in the response to oxidative stress, levels of lipid peroxidation, and concentrations of glutathione and s-adenosyl methionine (SAM) were quantified. Results indicate that dicamba does not induce oxidative stress. However, exposure to 2.2 μg L−1 of dicamba did cause a 5.24-fold increase in concentrations of SAM. To investigate the mechanisms of increased SAM, effects of dicamba on global and genome-wide DNA methylation were quantified. Dicamba did not cause changes to DNA methylation. Overall, dicamba was not acutely toxic to hepatocytes and did not cause oxidative stress or changes in DNA methylation at environmentally relevant concentrations.