In the dynamic area of drug development, researchers have been urged to uncover and test novel compounds with better effectiveness and fewer side effects in order to find more effective cancer treatments. In this comprehensive study, the synthesis and anticancer efficacy of new benzothiazole-thiazole have been displayed. Initially, a series of benzothiazole-thiazole conjugates 5a-c, 7a-b, and 8 were carefully designed and synthesized from the versatile 6-acetyl-2-phenylsulfonamidobenzothiazole (2), following the guidelines of rational design principles. The DFT/B3LYP approach showed that the synthesized hybrids had a non-planar configuration, where the benzene-sulfonamide group was oriented almost perpendicularly. The tested derivatives exhibited close HOMO-LUMO energies leading to small energy gaps (ΔEH-L = 1.54–2.97 eV). Additionally, the inhibitory effects of the newly synthesized conjugates were tested on four cancer cell lines, including HepG2, HCT-116, MCF-7, and WI38. Conjugates 5a and 8 had strong inhibitory effects on the HCT-116 and MCF-7 cell lines. Additionally, the synthesized conjugates showed inhibitory action against CAIX and CAXII, where conjugate 8 also effectively inhibited both isoforms, as well as, conjugate 5a. Molecular docking analysis was performed to study the binding affinities and interactions of the newly synthesized benzothiazole-thiazole conjugates with the target PDB: 5fl4 protein. Moreover, the ADME outlines of the inspected conjugates were displayed, and conjugates 2 and 6 showed suitable characteristics for GI absorption and minor violations of Lipinski’s rules; thus, they are promising lead compounds.