This study aims to evaluate how the operational procedure adopted for pellet placement and the exposure to subsurface conditions influence the mechanical integrity of bentonite plugs used as barrier elements in the abandonment of petroleum wells. To this end, the plugs were formed by hydrating the pellets directly in water, simulating the onshore procedure, while the offshore plugs were obtained from pellets hydrated in deionized water after immersion in diesel or olefin, which are suggested as displacement fluids. The plugs obtained were tested by compression and adhesion tests. These mechanical tests were also carried out for specimens obtained from plugs exposed to four formulations of synthetic formation waters. The results obtained demonstrated that, in the offshore procedure, the previous contact with olefin may adversely affects the mechanical stability of bentonite plugs, while plugs formed from pellets immersed in diesel presented satisfactory mechanical properties. However, the contact with formation water evidenced that the onshore plug presents superior resistance than the offshore plug previously immersed in diesel. The highly successful performance of the onshore plug was attested by the maintenance of the compressive strength, which exhibited a maximum reduction of 13%, even after exposure to the most saline formation waters.
Read full abstract