This study aims to assess the diagnostic utility of circulating tumor cells (CTCs) in conjunction with low-dose computed tomography (LDCT) for differentiating between benign and malignant pulmonary nodules and to substantiate the foundation for their integration into clinical practice. A systematic literature review was performed independently by two researchers utilizing databases including PubMed, Web of Science, The Cochrane Library, Embase, and Medline, to collate studies up to September 15, 2023, that investigated the application of CTCs in diagnosing pulmonary nodules. A meta-analysis was executed employing Stata 15.0 and Revman 5.4 to calculate the pooled sensitivity, specificity, positive and negative likelihood ratios (PLR and NLR), diagnostic odds ratio (DOR), and the area under the receiver operating characteristic curve (AUC). Additionally, trial sequential analysis was conducted using dedicated TSA software. The selection criteria identified 16 studies, encompassing a total of 3409 patients. The meta-analysis revealed that CTCs achieved a pooled sensitivity of 0.84 (95% CI 0.80 to 0.87), specificity of 0.80 (95% CI 0.73 to 0.86), PLR of 4.23 (95% CI 3.12 to 5.72), NLR of 0.20 (95% CI 0.16 to 0.25), DOR of 20.92 (95% CI 13.52 to 32.36), and AUC of 0.89 (95% CI 0.86 to 0.93). Circulating tumor cells demonstrate substantial diagnostic accuracy in distinguishing benign from malignant pulmonary nodules. The incorporation of CTCs into the diagnostic protocol can significantly augment the diagnostic efficacy of LDCT in screening for malignant lung diseases.
Read full abstract