Dietary isoflavones, a type of phytoestrogens, have gained importance owing to their health-promoting benefits. However, the beneficial effects of isoflavones are mediated by smaller metabolites produced with the help of gut bacteria that are known to metabolize these phytoestrogenic compounds into Daidzein and Genistein and biologically active molecules such as S-Equol. Identifying and measuring these phytoestrogens and their metabolites is an important step towards understanding the significance of diet and gut microbiota in human health and diseases. We have overcome the reported difficulties in quantitation of these isoflavones and developed a simplified, sensitive, non-enzymatic, and sulfatases-free extraction methodology. We have subsequently used this method to quantify these metabolites in the urine of mice using UPLC-MS/MS. The extraction and quantitation method was validated for precision, linearity, accuracy, recoveries, limit of detection (LOD), and limit of quantification (LOQ). Linear calibration curves for Daidzein, Genistein, and S-Equol were set up by performing linear regression analysis and checked using the correlation coefficient (r2 > 0.995). LOQs for Daidzein, Genistein, and S-Equol were 2, 4, and 2 ng/mL, respectively. This UPLC-MS/MS swift method is suitable for quantifying isoflavones and the microbial-derived metabolite S-Equol in mice urine and is particularly useful for large numbers of samples.