Color marble-like glass-ceramic materials were obtained through thermal treatment of glasses of the system CaO-Al2O3-SiO2 by using natural materials with the introduction of waste materials - ash from thermal power plants (TPP). The melting of the glass batch was in corundum crucibles at 1450oC with an isothermal hold of 60 min. The glasses obtained was fritted in distilled water and dried for 6 hours at 100oC, then completely crushed and divided into fractions with grain size of 0.8 mm, 1.0 mm, 2 mm, 2.5 mm and over 2.5 mm. It was found that the use of ash from TPP lead to higher values of degree of transformation (crystallization) than using base composition. Values of Avramy parameter’s in the range n=1,0 ÷ 1,6 are showed that crystallization of the glass frit is largely heterogeneous and crystal growing starts from the surface. The introduction of ash from TPP to native glasses carry out to significant reduction of energy of crystallization by Ес=289 kJ/mol to Ec=221 kJ/mol. The glass-ceramic materials were obtained through a one stage crystallization - 1050÷1070оС and an isothermal hold of 60 min., colored white, yellow brown to dark brown. The main crystalline phase in glass-ceramics is β-vollastonite with needle habit, size of crystals - ĺ = 40 ÷ 120 μm and d <5 μm in quantities 37 ÷ 42%. As secondary phases depending on the amount of ash have been identified - the anorthite, gehlenite and α-quartz with prismatic habit were appeared. The obtained glass-ceramic materials have a marble-like effect and technical parameters compared with natural granite and marble and have higher values of density, micro hardness, speed grinding, bending strength and chemical resistance. That’s why they can be used in construction such as lining materials.