In this work, the pyrolysis process and the characteristics of biochar produced using a bench-scale fixed-bed reactor and a prototype-scale auger reactor were studied. Residual forest biomass (RFB) from acacia, broom, gorse, and giant reed was used as feedstock. Besides information on pyrolysis characteristics of these specific biomass species from the Iberian Peninsula, new knowledge on the understanding of how results from small-scale reactors can be used to predict the behavior of higher-scale and continuous-operation reactors is offered. Batch pyrolysis was carried out using 40 g of biomass sample in a fixed-bed reactor with a heating rate of 20 °C∙min−1, pyrolysis temperature of 450 and 550 °C, and a residence time of 30 min, while for the continuous process it was used a prototype of an auger reactor with continuous operation with a biomass flow rate up to 1 kg/h, with temperatures of 450 and 550 °C, and a solids residence time of 5 min. The biochar yield was in the range of 0.26 to 0.36 kg/kg biomass dry basis, being similar for both types of reactors and slightly lower when using the auger reactor. The proximate analysis of the biochar shows volatile matter in the range 0.10 to 0.27 kg/kg biochar dry basis, fixed carbon in the range 0.65 to 0.84 kg/kg biochar dry basis, and ash in the range 0.04 to 0.08 kg/kg biochar dry basis. The carbon, oxygen, and hydrogen content of the biochar was in the range of 0.71 to 0.81, 0.09 to 0.22, and 0.02 to 0.03 kg/kg biochar dry basis, respectively. The results show that the up-scaling of the reactor and regime of operation does not have an important influence on the yield and characteristics of the biochar produced. The biochar obtained in the two types of reactors has characteristics appropriate for environmental applications, such as an additive to improve soil properties. It is possible to see that the characteristics of the biochar are influenced by the type of biomass and the conditions and parameters of the process; therefore, it is of major importance to control and know of these conditions, especially when considering upscaling scenarios.