Over the past few decades, corals of the genus Tubastraea have spread globally, revealing themselves to be organisms of great invasive capacity. Their constant expansion on the Brazilian coast highlights the need for studies to monitor the invasion process. The growth, fecundity, settlement, and data on the coverage area of three co-occurring Tubastraea species in the 2015-2016 period were related to temperature variation and light irradiance on the rocky shores of Arraial do Cabo, Rio de Janeiro. Hence, this study sought to understand and compare the current invasion scenario and characteristics of the life history strategy of sun coral species based on environmental variables, considering the uniqueness of this upwelling area in the southwestern Atlantic. For that, we evaluate the fecundity, settlement, and growth rates of corals by carrying out comparative studies between species over time and correlating them with the variables temperature and irradiance, according to seasonality. Field growth of colonies was measured every two months during a sample year. Monthly collections were performed to count reproductive oocytes to assess fecundity. Also, quadrats were scrapped from an area near a large patch of sun coral to count newly attached coral larvae and used years later to assess diversity and percentage coverage. Results showed that corals presented greater growth during periods of high thermal amplitude and in months with below-average temperatures. Only Tubastraea sp. had greater growth and polyp increase in areas with higher light incidence, showing a greater increase in total area compared to all the other species analyzed. Despite the observed affinity with high temperatures, settlement rates were also higher during the same periods. Months with low thermal amplitude and higher temperature averages presented high fecundity. While higher water temperature averages showed an affinity with greater coral reproductive activity, growth has been shown to be inversely proportional to reproduction. Our study recorded the most significant coral growth for the region, an increase in niche, high annual reproductive activity, and large area coverage, showing the ongoing adaptation of the invasion process in the region. However, lower temperatures in the region affect these corals' reproductive activity and growth, slowing down the process of introduction into the region. To better understand the advantages of these invasion strategies in the environment, we must understand the relationships between them and the local community that may be acting to slow down this colonization process.