Optical amplification in C and L band region with wave division multiplexing can provide over 160 channels. The paper provides simulation studies of such a wideband erbium doped fiber amplifier which utilizes a tunable tap at the TLS source end. This isolates and provides two parallel channels for simultaneous amplification in both C and L band. Such a configuration has shown to provide a gain well over 20dB from 1525-1615nm bandwidth with average noise figure of 10dB (approx.). Gain saturation effects beyond -20dBm/channel signal level and, gain spectra at different pump powers and amplifier lengths have also been studied. Full Text: PDF References Robert E. Tench, Proc. IEEE Elecronic Componenets and Technology Conference. 9, (1999). J. F. Massicott, R. Wyatt, and B. J. Ainslie, "Low noise operation of Er 3+ doped silica fibre amplifier around 1.6 ?m", Electron. Lett. 28, 1924 (1992). CrossRef Y. Sun, A. Srivastava, J.Zhou, and J. Sulhoff, "Optical fiber amplifiers for WDM optical networks", Bell Labs Technical Journal. 4, (1999) CrossRef H. Ono, M. Yamada and Y. Ohishi, "Gain-flattened Er/sup 3+/-doped fiber amplifier for a WDM signal in the 1.57-1.60-?m wavelength region", IEEE Photon. Technol. Lett. 9, (1997). CrossRef C. Jiang, W. Hu, Q. Zeng and S. Xiao, "High detectivity GaInAs-InP quantum-well infrared photodetectors grown on Si substrates", IEEE Photon. Technol. Lett. 14, 290 (2002). CrossRef M. A. Mahdi, F. R. M. Adikan, P. Poopalan, S. Selvakennedy, W. Y. Chan, and H. Ahmad, "Long-wavelength EDFA gain enhancement through 1550 nm band signal injection", Opt. Commnun.175, 296 (2000). CrossRef H. Chen, M. Leblanc and G.W. Schinn, "Gain enhanced L-band optical fiber amplifiers and tunable fiber lasers with erbium-doped fibers", Opt. Comm. 216, 119 (2003). CrossRef M. A. Mahdi and H. Ahmad, "Gain enhanced L-band Er/sup 3+/-doped fiber amplifier utilizing unwanted backward ASE", IEEE Photon. Technol. Lett. 13, 1067 (2001). CrossRef S. W. Harun, N. Tamchek, P. Poopalan and H. Ahmad, "Gain clamping in two-stage L-band EDFA using a broadband FBG", IEEE Photon. Technol. Lett. 16, 422 (2004). CrossRef T. Sakamoto. "Wide wavelength band (1535?1560 nm and 1574?1600 nm), 28 × 10 Gbit/s WDM transmission over 320 km dispersion-shifted fibre", Electron. Lett.34, 392 (1998). CrossRef Y. Sun et al., "80 nm ultra-wideband erbium-doped silica fibre amplifier", Electron. Lett. 33,1965 (1997). CrossRef T. Kasamatsu, Y. Tano and T. Ono, 13, 31 (2001). S. K. Liaw and Y. K. Chen, "Self-phase modulation coefficient of multiple-quantum-well optical amplifiers", IEEE Photon. Tech. Lett. 8, 876 (1996). CrossRef A. Srivastava and Y. Sun, Optical Fiber Telecommunications, I. P. Kaminov and T. Li, Eds. (San Diego, CA: Academic 2002, vol. VI A). R. Anthony and S.N. Biswas, "Temperature Dependent Gain Analysis of a Cascaded C-Band EDFA DWDM Network", Elseviers Procedia Technol. 4, 92 (2012). CrossRef G. Luo, J. L. Zyskind, I. A. Nagel, and M. A. Ali, "Experimental and theoretical analysis of relaxation-oscillations and spectral hole burning effects in all-optical gain-clamped EDFA's for WDM networks", IEEE J. Lightwave Technol. 16, 527 (1998). CrossRef I.K. Bu Sohn and J.W. Song, "Gain flattened and improved double-pass two-stage EDFA using microbending long-period fiber gratings", Optical Communications. 236, 141 (2004). CrossRef R. Singh, Sunanda and E.K. Sharma, "Gain flattening by long period gratings in erbium doped fibers", Optical Communications. 240, 123 (2004). CrossRef