Insufficient understanding of the stress-strain behavior of pavements built over backfilled trenches, particularly with recycled aggregates, often leads to over-design or over-compaction, raising costs and project delays. This research investigates how compaction levels during backfilling impact the pavement performance over these trenches. Various recycled material mixtures, both unbound and cement-treated, are compared with conventional crushed rock. Investigations included repeated load triaxial (RLT) tests, microstructural analysis with Scanning Electron Microscopy (SEM), environmental assessments, and modeling with FlexPAVETM, a pavement response and performance analysis software. RLT test results were incorporated into the FlexPAVETM models by utilizing established constitutive resilient modulus models. Stress-strain responses of pavements over recycled aggregate backfill, compacted with standard and modified Proctor efforts, were compared with those over crushed rock and natural clay subgrades. Outcomes revealed that the standard compaction energy was sufficient for the desired performance. Fatigue and rutting strains with recycled mixtures closely resembled those with crushed rock, making them viable green alternatives. Pavements over backfilled trenches exhibited 1.5 and 1.8 times longer fatigue and rutting lives, respectively, than those over natural clay subgrades.
Read full abstract