Maternal obesity and gestational diabetes predispose the next generation to metabolic disturbances. Moreover, the lactation phase also stands as a critical phase for metabolic programming. Nevertheless, the precise mechanisms originating these changes remain unclear. Here, we investigate the consequences of a maternal lipid-rich diet during gestation and lactation and its impact on metabolism and behavior in the offspring. Two experimental groups of Wistar female rats were used: a control group (NC) that was fed a standard diet during the gestation and lactation periods and an overnutrition group that was fed a high-fat diet (HF, 60% lipid-rich) during the same phases. The offspring were analyzed at postnatal days 21 and 28 and at 2 months old (PD21, PD28, and PD60) for their metabolic profiles (weight, fasting glycemia insulin sensitivity, and glucose tolerance) and euthanized for brain collection to evaluate metabolism and inflammation in the hypothalamus, hippocampus, and prefrontal cortex using Western blot markers of synaptic dynamics. At 2 months old, behavioral tests for anxiety, stress, cognition, and food habits were conducted. We observed that the female offspring born from HF mothers exhibited increased weight gain and decreased glucose tolerance that attenuated with age. In the offspring males, weight gain increased at P21 and worsened with age, while glucose tolerance remained unchanged. The offspring of the HF mothers exhibited elevated levels of anxiety and stress during behavioral tests, displaying decreased predisposition for curiosity compared to the NC group. In addition, the offspring from mothers with HF showed increased food consumption and a lower tendency towards food-related aggression. We conclude that exposure to an HF diet during pregnancy and lactation induces dysmetabolism in the offspring and is accompanied by heightened stress and anxiety. There was sexual dimorphism in the metabolic traits but not behavioral phenotypes.