The microstructure of heterogeneous materials affects importantly their macroscopic mechanical behavior. For a thermal-mechanical coupling problem, the temperature also has a significant effect. Firstly, the effect of temperature on the elastic behavior of heterogeneous material has been investigated in the present work with the consideration of its microstructure. Then, an explicit expression of the macroscopic yield criterion has been derived for the plastic behavior of porous material by using the homogenization approach. This yield criterion takes into account explicitly and simultaneously the influence of porosity and the effect of temperature on its overall mechanical behavior. To consider the pressure sensitivity of the matrix, the Drucker–Prager type criterion is adopted at the microscopic scale. After that, the heterogeneous material with a matrix reinforced by rigid inclusions has been studied. The microstructure information, such as the inclusion content, matrix property and the temperature have been considered explicitly in the obtained yield function. The influences of temperature and the confining pressure on the macroscopic material strength are captured by the obtained criterion. Then, the obtained result is applied to describe the temperature-dependent mechanical behaviors of sandstone.
Read full abstract