Single enzyme chemotaxis is a phenomenon by which a nonequilibrium spatial distribution of an enzyme is created and maintained by concentration gradients of the substrate and product of the catalyzed reaction. These gradients can arise either naturally through metabolism or experimentally, e.g., by flow of materials through microfluidic channels or by use of diffusion chambers with semipermeable membranes. Numerous hypotheses regarding the mechanism of this phenomenon have been proposed. Here, we discuss a mechanism based solely on diffusion and chemical reaction and show that kinetic asymmetry, a difference in the transition state energies for dissociation/association of substrate and product, and diffusion asymmetry, a difference in the diffusivities of the bound and free forms of the enzyme, are the determinates of the direction of chemotaxis and can result in either positive or negative chemotaxis, both of which have been demonstrated experimentally. Exploration of these fundamental symmetries that govern nonequilibrium behavior helps to distinguish between possible mechanisms for the evolution of a chemical system from initial to the steady state and whether the principle that determines the direction a system shifts when exposed to an external energy source is based on thermodynamics or on kinetics with the latter being supported by the results of the present paper. Our results show that, while dissipation ineluctably accompanies nonequilibrium phenomena, including chemotaxis, systems do not evolve to maximize or minimize dissipation but rather to attain greater kinetic stability and accumulate in regions where their effective diffusion coefficient is as small as possible. The chemotactic response to the chemical gradients formed by other enzymes participating in a catalytic cascade provides a mechanism for forming loose associations known as metabolons. Significantly, the direction of the effective force due to these gradients depends on the kinetic asymmetry of the enzyme and so can be nonreciprocal, where one enzyme is attracted to another enzyme, but the other enzyme is repelled by the one, in seeming contradiction to Newtons third law. This nonreciprocity is an important ingredient in the behavior of active matter.
Read full abstract