Plasma in Hall thrusters exhibits a complex behavior, characterized by the interplay between various dominant processes in each of the thruster’s coordinates. The emergence of high-power Hall thrusters in the recent years and the design modifications intended to extend the lifetime of these devices have further amplified the three-dimensional nature of the plasma behavior. In this regard, the novel reduced-order particle-in-cell (PIC) scheme provides the possibility to resolve the multi-dimensional interactions in a Hall thruster at a computational cost up to two orders of magnitude lower than current multi-dimensional PIC simulations. To demonstrate this point, we present in this article the results from a series of pseudo-two-dimensional simulations we performed in three configurations: axial-azimuthal, azimuthal-radial, and axial-radial. We show that, in each configuration, the pseudo-2D PIC scheme provides a significantly improved picture of the involved physics compared to a one-dimensional PIC simulation and captures self-consistently the coupling between the plasma processes in different directions, notably similar to the observations from full-2D kinetic simulations.