The invasive rust Austropuccina psidii was detected in the Hawaiian Islands in 2005 and has become widely established throughout the archipelago in both native and introduced species of Myrtaceae. Initial predictions about the impacts of the fungus on native ʽōhiʽa lehua (Metrosideros polymorpha), a keystone native tree, have not materialized, but there is ongoing concern that introductions of new genotypes of the fungus could lead to widespread mortality with catastrophic effects on native ecosystems. By contrast, two recently emergent Ascomycete pathogens, Ceratocystis lukuohia (Ceratocystis wilt of ‘ōhi‘a) and C. huliohia (Ceratocystis canker of ‘ōhi‘a), collectively known to cause Rapid ʽŌhiʽa Death (ROD), are causing significant mortality in native forests on Hawaiʻi and Kauaʻi Islands, but pathways of spread are still incompletely understood. We used a network of passive environmental samplers for collecting windblown urediniospores of Austropuccina to evaluate the effectiveness of environmental monitoring to detect seasonal and landscape-scale differences in airborne propagules of this rust on Hawai`i Island. The samplers were also used to determine if windborn ambrosia beetle frass or spores of Ceratocystis can spread long distances. We found frequent detections and regional and seasonal differences in numbers of samplers that were positive for urediniospores of Austropuccinia, but little evidence of long-distance airborne dispersal of the ROD-causing fungi. The simple, inexpensive platform for sampling airborne fungal spores that we used may have value as a monitoring tool for detecting spread of airborne fungal pathogens, evaluating habitats for suitability for restoration efforts, and for detecting new pathogen introductions, particularly new Austropuccinia genotypes both in Hawaiʻi and other parts of the world.
Read full abstract