For electrical motors, three translational ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x–y–z</i> ) and two tilting ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">θ<sub>x</sub>–θ<sub>y</sub></i> ) rotor motions must be restricted. Ball bearings are commonly used to restrict motion; however, they cannot be applied to high-speed motors with large <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">DN</i> (product of bearing diameter and speed) values. The rotor in this study has an aerostatic bearing support in radial ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x–y</i> ) and tilting ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">θ<sub>x</sub>–θ<sub>y</sub></i> ) motions. However, if an additional magnetic bearing or actuator is applied to the motor for axial motion control ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">z</i> ), the motor size and shaft length increases. To avoid this problem, a novel bearingless motor structure with a magnetically integrated bearing function is proposed in this paper. The structure combines the functions of both torque production ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">θ<sub>z</sub></i> ) and axial force generation ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">z</i> ) in one unit. It uses only a set of three-phase slotless windings and three-phase voltage source inverter. Such bearingless motors are referred to as single-drive bearingless motors. The <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</i> -axis and <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">q</i> -axis currents regulate the axial suspension force and torque, respectively. This paper presents the structure, operation principle, 3D-finite element calculation results, and experimental results. The fabricated prototype bearingless motor with a shaft diameter of 30 mm can actively control the axial motion of the rotor at 60,000 rpm, that is, with a <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">DN</i> value of 1,800,000.