Reconfigurable intelligent surfaces (RISs), which consist of numerous passive reflecting elements, have emerged as a prominent technology to enhance energy and spectral efficiency for future wireless networks. RISs have the capability to intelligently reconfigure the incident wave, reflecting it towards the intended target without requiring energy for signal processing. Consequently, they have become a promising solution to support the demand for high-throughput satellite communication (SatCom) and enhanced coverage for areas inaccessible to terrestrial networks. This paper presents an asymptotic analysis of an RIS-assisted SatCom system. In this system, an unmanned aerial vehicle equipped with an RIS operates as a mobile reflector between a satellite and users. In particular, a passive beamformer is designed with the aim of asymptotically attaining optimal performance, considering the limitations imposed by practical SatCom systems. Moreover, the closed-form expressions for the ergodic achievable rate and outage probability are derived considering the proposed passive beamforming technique. Furthermore, we extend the system model to a multicast system and asymptotically analyze the optimality of the proposed scheme, leveraging the derived asymptotic results in the unicast system. The results of the simulations confirm that our analyses can precisely and analytically assess the performance of the RIS-assisted SatCom system, confirming the asymptotic optimality of the proposed scheme.
Read full abstract