Alternate substrates for molecular beam epitaxy growth of HgCdTe including Si, Ge, and GaAs have been under development for more than a decade. MBE growth of HgCdTe on GaAs substrates was pioneered by Teledyne Imaging Sensors (TIS) in the 1980s. However, recent improvements in the layer crystal quality including improvements in both the CdTe buffer layer and the HgCdTe layer growth have resulted in GaAs emerging as a strong candidate for replacement of bulk CdZnTe substrates for certain infrared imaging applications. In this paper the current state of the art in CdTe and HgCdTe MBE growth on (211)B GaAs and (211) Si at TIS is reviewed. Recent improvements in the CdTe buffer layer quality (double crystal rocking curve full-width at half-maximum ≈ 30 arcsec) with HgCdTe dislocation densities of ≤106 cm−2 are discussed and comparisons are made with historical HgCdTe on bulk CdZnTe and alternate substrate data at TIS. Material properties including the HgCdTe majority carrier mobility and dislocation density are presented as a function of the CdTe buffer layer quality.