In recent years, overturning accidents at single-pier bridges have occurred frequently, resulting in significant property losses and safety accidents. Overturning accidents show that there are still many hidden dangers in the design, operation, and management of existing single-pier bridges. Therefore, this paper takes the K503 + 647.4 separated overpass of the Hegang–Dalian Expressway as the research object and carries out an onsite anti-overturning stability test of a single-column pier bridge. Through loading under various working conditions, the displacement changes of each support are measured, and the reaction changes of the supports are calculated. In the process of simulating the field test using the finite element program ANSYS, a rigid model based on ideal support and an elastic model considering beam deformation are established, and the accuracy of the elastic model is verified by comparison with the field-measured data. Furthermore, a series of parameters, such as the bridge side-span ratio, bridge span number, bearing spacing, loading position, and torsional rigidity, are varied, and finite element simulation is carried out on the basis of the elastic model. Through comparison of the results, a relationship between the parameters of the single-pier bridge and the anti-overturning ability is obtained, which provides a theoretical basis for anti-overturning design research and the effective reinforcement of single-pier bridges.