Estimating species’ vulnerability to climate change is a key challenge in conservation. Many seabird species are particularly sensitive to the negative effects of warming and are thus threatened by climate change. We projected seabird abundance in 2050 in Britain and Ireland, an internationally important region for seabirds, under climate change scenario RCP8.5. Our projections were based on fitted relationships between abundance and both climatic (air temperature, precipitation) and oceanographic (sea surface temperature, potential energy anomaly) variables, estimated using a Bayesian hurdle model with spatial random effects. The most consistent responses to environmental variables were negative relationships between species presence or abundance and breeding season maximum terrestrial air temperature. Although data and modelling issues meant that future projections could be made for only 15 of the 25 species and with low predictive power for spatial abundance, predictive power was high for spatial presence and moderate for temporal abundance change. Projections suggest that seabirds will generally fare poorly under climate change in Britain and Ireland, with 10 species projected to decline in abundance by 2050. Variable model fit and projection uncertainty limited confidence, which was generally greater for declines than for increases. Fulmar, puffin and Arctic tern were each projected to decline by over 70% with higher confidence. For a few species, colonisation of new areas may reduce projected losses, but this is potentially limited by low availability of suitable habitat. Projected abundance change was more negative for marine specialists than for generalists. Our findings highlight the vulnerability and conservation needs of seabirds in a changing climate.
Read full abstract