Bacillus sp. TL7-3 has potential as a dietary supplement to promote human and animal health. It produces spores that can survive in harsh environments. Thus, when supplemented with nutrients, these spores can withstand the acidic pH of the stomach and resume vegetative development in the gut when exposed to growth-promoting conditions. Spores are formed as a cellular defense mechanism when a culture experiences stress and process optimization to achieve high spore production in a typical batch process remains challenging. Existing literature on the manipulation of gene expression and enzyme activity during batch cultivation is limited. Studies on the growth patterns, morphological changes, and relevant gene expression have aided in enhancing spore production. The present study used the response surface methodology for medium optimization. The model suggested that yeast extract and NH4Cl were significant factors controlling spore production. A comparison between the high weight ratio of carbon and nitrogen (C:N) substrates (8.57:1) in the optimized and basal media (0.52:1) showed an 8.76-fold increase in the final spore concentration. The expression of major genes, including codY, spo0A, kinA, and spo0F, involved in the sporulation was compared when cultivating Bacillus sp. TL7-3 in media with varying C:N ratios. At high C:N ratios, spo0A, kinA, and spo0F were upregulated, whereas codY was downregulated. This led to decreased guanylate kinase activity, resulting in a low guanosine triphosphate concentration and inactivation of CodY, thereby reducing the repression of spo0A and CodY-repressed genes and stimulating sporulation.