Network representation learning is one of the important works of analyzing network information. Its purpose is to learn a vector for each node in the network and map it into the vector space, and the resulting number of node dimensions is much smaller than the number of nodes in the network. Most of the current work only considers local features and ignores other features in the network, such as attribute features. Aiming at such problems, this paper proposes novel mechanisms of combining network topology, which models node text information and node clustering information on the basis of network structure and then constrains the learning process of network representation to obtain the optimal network node vector. The method is experimentally verified on three datasets: Citeseer (M10), DBLP (V4), and SDBLP. Experimental results show that the proposed method is better than the algorithm based on network topology and text feature. Good experimental results are obtained, which verifies the feasibility of the algorithm and achieves the expected experimental results.
Read full abstract