Here, we present a higher dimensional model from the vorticity equation, which describes the dynamic characteristics of large scale Rossby waves by utilizing the Gardner-Morikawa coordinate transformation and the perturbation method. To reveal the influence of physical parameters on the higher dimensional model, we first give the dispersion relation of the model and the N-soliton solutions by Hirota method. Subsequently, the lump solutions are derived by using the long wave limit method. It demonstrates that the horizontal component of the Coriolis force acts as a forcing force on the nonlinear Rossby waves, and affects the amplitude of the meridional structure. Moreover, under the background of secondary zonal basic flow, for different lump solutions, the flow field will appear dipole blocking or double vortex structure. It is also indicated that the horizontal Coriolis force only causes the vortex to move in the latitudinal direction.